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The stability and accuracy of various boundary treatments are analyzed for the two-step 
Richtmyer and MacCormack methods. Special attention is paid to ways of imposing the 
extra boundary conditions after the first step of the two-step process. The theory of Kreiss 
is used to study stability properties for both scalar and vector equations. The theory of 
Skollermo is used to compare accuracies of the various methods. Computations were 
also performed on both wavelike equations and on systems that approach a steady state. 
Several suggestions are given for more reliable boundary treatments. 

1. INTRODUCTION 

In recent years it has become popular to use two-level multistep methods for 
solving time-dependent problems in continuum mechanics. The schemes are chosen so 
that the pure initial-value problem is well posed. However, it is well known that 
most finite-difference schemes require more boundary data than those furnished by 
the given boundary conditions. Kreiss [6] and Gustafsson ef al. [2] have established 
methods for deciding the stability of schemes with these additional numerical boundary 
conditions determined by various means. In the latter paper several applications 
were given for some of the well-known methods. Later Chu and Sereny [l] and 
Sundstrom [13] discussed other possibilities. Nevertheless for the procedures used 
in practice much is not known. In this study we analyze the stability of the Richtmyer 
and MacCormack two-step methods subject to a variety of techniques for specifying 
the additional boundary conditions. 
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2. THEORETICAL BACKGROUND 

We briefly review the stability theory of Kreiss for the initial boundary problem 
so as to make this paper self-contained. The reader is referred to the previously 
mentioned papers for further details. Consider the equation 

Ut = au, ) O<X<l, t>o, (2.1) 

with initial data U(X, 0) = uO(x). We assume that a is a real scalar constant. The 
theory can be extended to vector equations for strictly hyperbolic systems by dia- 
gonalizing the matrix. It has also been proved that these results apply for equations 
with variable coefficients. 

When the constant a is positive, it is necessary to specify analytically a boundary 
condition at the right boundary, x = 1; while if a is negative the condition is specified 
at the left boundary, x = 0. Hence, in addition to Eq. (2.1), we specify boundary 
conditions. 

40, t> = go(t) if a < 0, 

WY t> = gdt> if a > 0. 
(2.2) 

Popular methods for solving this equation are second-order three-point formulas 
of the form ,;+I = F(‘(u.& , u,“, u;+~) for some function F. It is readily seen that 
numerically one needs boundary conditions at both x = 0 and x = 1. We assume 
that in addition to the analytically given conditions (2.1) and (2.2) a separate procedure 
is used to determine the extra boundary conditions. For example, if a > 0 then 
u;” = G(q,“, uln,...) f or some function G. The Kreiss stability theory for this case 
makes the ansatz ujn = zn& for appropriate complex scalars z and K. This sub- 
stitution is made in both the difference scheme in the interior and on the boundary. 
The basic difference scheme is assumed stable and so the Von Neumann stability 
condition says that 1 z 1 ,( 1 for j K I = 1. It is then proven that the initial-boundary 
scheme is stable if there are no nontrivial solutions of these equations with 1 z 1 > 1 
and 1 K / < 1. Conversely the scheme is unstable if there exist solutions with 1 z I > 1 
but I K / < 1. When 1 z I = 1, I K j = 1 there are two cases to consider. If z # 1 
the stability is not assured. When z = 1 it is called a generalized eigenvalue and to 
establish stability one must analyze the rate of growth. Kreiss [5] has shown that 
K = 1 and z = 1 does not lead to any instabilities for the Lax-Wendroff type of 
scheme considered here. These concepts are applied to specific problems in the next 
sections. The extension of this technique to multilevel schemes or to methods that 
have a larger domain of dependence than three points is more difficult; the reader 
is referred to [2, 51 for details. Generalizations to parabolic equations have been 
proved by Varah [ 141. 
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3. HYPERBOLIC STABILITY 

As concrete applications of this technique we consider several multistep methods. 
Historically, the first multistep method was proposed by Richtmyer and Morton [lo] 
for equations in divergence form. For the simple equation (2.1) this method is given by 

try+ = ;(uy+l + Ji ; Ujn) + (U/2)(dt/dS)(U~~1 - Ujn), (3.la) 

p = Ujn + a(Llt/dx)(ujn;i~ - uJ3:J!>. (3.lb) 

This set will be referred to as (R). We shall only consider the left boundary x = 0. 
The situation at the right boundary corresponds to interchanging x with -.x or 
equivalently a with -a. Kreiss has shown that it is sufficient to consider each boundary 
separately. 

Another set of two-step algorithms was proposed by MacCormack [8]. The first 
variant, which we refer to as (FB), is given by 

f&l) = UjR + a(Llt/ds)(u,“,, - ujn), 3 (3.2a) 

u;+1 z.z $(Ujn + uj’)) + &7(dr/Llx)(u~1) - &). (3.2b) 

With this variant one can calculate u (I) at the boundary x = 0, but not u”+l. The 
second variant of MacCormack’s method, referred to as (BF), is given by 

u(l) = ujn + a(dr/LIX)(Ujn - &), 1 (3.3a) 

$+I = &” + fp) + ~a(dt/Llx)(u,‘.l,), - ujl)). (3.3b) 

With this variant one can no longer calculate u In at x = 0 but once it is determined 
by some other method one can calculate u n+l at x = 0. The situation at the right 
boundary corresponds to interchanging the two variants. For linear equations with 
constant coefficients all three basic schemes (R), (FB), and (BF) are identical. 

As previously discussed when a is positive, it is necessary to use separate numerical 
procedures to determine @+I at the left boundary x = 0. We consider the following 
techniques for determining u:+‘. 

V2+1 I. 240 = 2u:+t - .;+r. 

This is linear extrapolation at time t + dt, i.e., uEzl jzzO = 0. 

Ila. ul, = 2UOn - Uln, 

Ilb. .;+l = ugn + a(dt/dx)(u,” - Ugn), 

IIC. .;+l = UF’. W3 

Technique IIa is linear extrapolation at time t to a point outside the domain; IIb is 
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an approximation of the differential equation using differences forward in time and 
space finite; IIc applies only to (FB) and equates u:+’ to the approximation at the 
middle step, which is a first-order approximation to ~(0, t + dt). These are grouped 
together since they are identical for equations with constant coefficients. Techniques 
Ilb and IIc are identical even for nonlinear problems; IIc, when applicable, is the 
easiest to use computationally. 

11Ia. 24”;” = 2u;+* - Ui+‘, 

I]Ib. .;+l = ,;+I + ugn - uln. 

0-V 

Method IIIa is linear extrapolation outside the domain for the middle step of the 
Richtmyer method; IIIb is the equivalent of u,~ = 0 at the boundary. 

IVa. u!!j = 2~:’ (1) 
- Ul 2 

IVb. u;+l = &(uo + up) + ga(Llt/dx)(up’ - u(y), 

IVC. up = uon + a(dt/Llx)(u,” - Zion). 

(FB) 

W) 

W) 

Methods IVa, IVb are only applicable to (FB), IVa being linear extrapolation 
outside the domain at the intermediate step and IVb similar to (3.2) with the backward 
difference replace by a forward difference at the boundary. If the extrapolation in IVa 
is done on the fluxes then IVa and IVb are equivalent even for nonlinear problems. 
Method IVc applies only to (BF) and is similar to (3.3a), again with the backward 
difference replaced by a forward difference. 

This is linear extrapolation in the middle step of (BF). 

VI. .;+l = 2&’ - &‘. (W 

This is a composite of V and u:” = u;‘. 

Remark. We have concentrated on first-order methods since Gustafsson [3] has 
shown that this is sufficient for second-order convergence of the scheme. In the 
computational section we also consider zeroth and quadratic extrapolations. 

We now find the regions of stability for the scalar equation (3.1). Gustasson et al. [2] 
have shown that the Lax-Wendroff method is stable if any order extrapolation is 
applied at the end and so we need not consider I. Similarly, they have shown that 
IIb is stable. Since each group is linearly equivalent we need not consider group II 
either. Hence, we begin with group III. Assuming uj” = UK~Z” and substituting 
into either (3.1) or (3.2) or (3.3) we find that 

ZK = K + (T/2)(K2 - 1) + (T2/2)(K - 1)2; 7 = a(Llt/dx). (3.4) 
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Using boundary conditions III we find that 

z = 1 + (T/2)(lc2 - 1) + (T2/2)(K - 1)2. (3.5) 

Subtracting (3.5) from (3.4) yields Z(K - 1) = K - 1. Hence, z = 1 and either 
K~ = 1 or ICY = (7 - l)/(~ + 1). As before, K~ = 1 creates no difficulty. However, 
~~ is now an eigenvalue since / ~~ I < 1 while z = I. Gustaffson (personal commu- 
nication) has shown that in this case the scheme is stable but there is a loss of accuracy. 

Boundary conditions IV are equivalent to 

Z = 1 + T(K - 1) + (T2/2)(K - 1)2. (3.6) 

Multiplying (3.6) by K and subtracting from (3.4) we have that K = 1 or K = 1 - l/~. 

K = 1 creates no difficulties while K = 1 - l/~ implies that z = 4 and so there are no 
instabilities. 

Boundary condition V implies that 

Z = +(I + 2K - K2) + T(K - 1) + (T2/2)(K - 1)“. (3.7) 

Subtracting (3.7) from (3.4) and assuming K # 1 we have that z = &[l - 7 + ~(1 + T)]. 

Hence, 1 z / < *[I 1 - 7 1 + 1 1 + T  11 since 1 K j < 1. Since 1 T  / < 1 for initial- 
value stability we have that j z / < 1 and no instabilities occur. 

Finally, boundary condition VI implies that 

Z = 2K - K2 + T(-2 + 3K - K”). (3.8) 

Multiplying (3.8) by K and subtracting from (3.4) we find that K = ~(1 - T)/2(1 + T)  

so / K 1 < 1. In this case z = -(T/4)(T2 + 37 + 4). Hence, for T  < 0.64 we have 
1 z 1 < 1 and stability. For this case the boundary treatment necessitates a smaller 
time step for stability than the pure initial-value problem required. 

THEOREM. Boundary conditions I, II, IV, and V are stable when 7 < I, as for the 
initial-value problem. Boundary case III has an eigenvalue / K I < 1, z = 1 while 
condition VI is only stable when 7 < 0.64. 

Both these latter facts are observed in the computational data. 
We next consider the case when a < 0. Then the boundary condition is given 

analytically. In the MacCormack methods one of the two steps can be calculated 
at x = 0 without use of this boundary condition. Expansion in a Taylor series shows 
that the use of the boundary condition at both the intermediate and final steps 
makes (3.2) only first order at the mesh point nearest the boundary. Nevertheless, 
computational results indicate that it is much better to specify the boundary con- 
ditions at both levels. In fact the ability to specify the boundary conditions at both 
steps seems to be a major advantage of the MacCormack method over the Richtmyer 
scheme. A similar situation occurs in time-splitting methods (see [9]). 
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4. SYSTEMS OF EQUATIONS 

The previous section applies only to scalar equations or to a system of equations 
when the extra condition due to the difference method is calculated on the outgoing 
characteristic values. In this section we analyze some noncharacteristic specifications. 
We first consider the system 

Let 

zit = -u, - 2v, ) (4.la) 
I?/, = -2u, - V,) 0 <xx< I, t > 0. (4.1 b) 

U+V II ~ 2’ 
4= -3 2 

I-=----, 
2 

u=q+r, r=q-r, (4.2) 

qt + 39, = 0, (4.3a) 

rt - rr = 0. (4.3b) 

This system was chosen since it has positive and negative eigenvalues and there 
are no obvious symmetries. Tt is necessary to give one boundary condition at both 
the left and right boundaries while the other boundary is given by a numerical 
technique. As before it is sufficient to consider only the boundary x = 0. If at x = 0 
we calculate r by any of the methods of the previous section then all the conclusions 
of that section remain valid. However, a more usual procedure is to specify u at 
x = 0 and to calculate v by a numerical technique. Because of the complexity of the 
problem we shall consider only space extrapolation methods for determining 2:. 
Additional procedures are considered in the computations. As before we let 

q = QK~~z”, r = RKZizTt. (4.4) 

The initial-boundary problem is unstable if there exists a nontrivial solution of the 
above form to both the difference scheme and the boundary conditions with both 
1 K~ / < 1, I K~ 1 < 1 and 1 z 1 > 1. As before, if K is on the unit circle a more delicate 
treatment is required. 

Substituting (4.4) into the Lax-Wendroff scheme for (4.3) we have 

KlZ = K1 + (7,/2)(K1~ - 1) + (-r,‘/2)(K, - I>“, (4.5a) 

KgZ = K2 + (T2/2)(KZ2 - 1) + (T22/2)(K, - I)“, (4.5b) 

where 71 = -34t/dx and 72 = dt/dx. For initial-value stability we assume / 71 I < 1. 
Specifying u at x = 0, (4.2) yields that 

Q --j- R = 0. (4.6a) 

Using (j - I)th-order space extrapolation at x = 0 together with (4.6a) we have 

(K1 - 1)’ -t (K2 - 1)’ = 0 (4.6b) 
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OT 

K 1 - 1 = W(K2 - I), (4.7) 

where w  is one of thejth roots of (- 1). We first consider zeroth-order extrapolation, 
vo nt1 = on+1 . Then (4.7) becomes ~~ + K~ = 2. The only roots of this with 1 K~ 1 < 1, 
1 K., 1 < ; are K1 = K~ = 1. However, Kreiss has already shown that this causes 
no-trouble and so we have stability. For general jth-order extrapolation we multiply 
(4.5a) by $ , (4.5b) by K~ and subtract. This gives a plynomial in K~ and K2 . K~ can be 
eliminated by the boundary condition (4.7). The resulting polynomial in K~ can be 
solved numerically for a sequence of TV , r2 . It was found that linear extrapolation 
is stable for this system while quadratic extrapolation is unconditionally unstable. 

We next show that even zeroth-order extrapolation can be unstable if some non- 
characteristic variables are extrapolated. This occurs even though the initial-boundary 
problem for the differential equations is well posed. 

Assume qt = h,q, and rt = h2re. Let u = q + r and v = q + ur. When u = 1 
the variables u and v are linearly dependent. When u # 0, 1 and h,h, < 0, the problem 
is well posed if one boundary condition is specified at each end of the x interval. 
We assume that we solve the equations using the Lax-Wendroff scheme; u = 0 
at the left boundary and v is found by zeroth-order extrapolation, i.e., van = urn. 
Let T1 = X(&/Ax), T2 = h,(dt/dx), qj” = K~~z~, rjn = K~~z~. The boundary condition 
is then equivalent to 

K1 = 1 = U(KZ - I), (5 real, (4.8) 

and the differential equation is represented by (4.5). Multiplying (4.5a) by K2, 

(4.5b) by K~ , subtracting and using (43, we find that 

+ K2[UT# - U - UT1) - T# - 2UT, + T2)] - (1 - U) T2(1 - T2) = 0. (4.9) 

Let u = 1 + E, E small; then a root of (4.9) is 

ET& + 72) 
K2 = [Tl( 1 + T1) - T2(1 + T&][Tl(l - T1) - T2(, - T2)] + ‘(“)’ (4 ,o) 

K1 = K2 - E + O(E’). 

This result holds if dt is large enough that KJT~ and K.JT~ are O(E). If we substitute 
this into (4.5) we find that z = 0(1/e). Hence, if the specified and extrapolated values, 
u and v, are close to being linearly dependent then the time step required for stability 
with zeroth-order extrapolation is severely reduced. For example, if u = 1.1, T1 = + , 
T2 = - 4 (i.e., half the Courant number), then K2 N 0.02, K1 ZZI. 0.07 and z N_ 6.1. 
Thus, even when E is not very small the same conclusions may hold. 
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5. ACCURACY 

Until now we have discussed only the stability of the initial-boundary problem. 
Given the stable boundary approximations one wishes to compare the accuracy of 
the solutions. A start in this direction was given by SkGllermo [l 11. As before we give 
a brief description of the procedure as it applies to the Lax-Wendroff scheme. 
Applications to multilivel schemes or schemes that require a larger domain of 
dependence are more involved. Let f(z, K) = 0 be the boundary algorithm that is 
being tested. Let E =f(z, K)/~(z, K&, where z = egniwAt, K = e2niwArla and K~ is the 
root inside the unit circle which corresponds to z = 1 for the basic difference scheme. 
For the Lax-Wendroff method K~ = (T - I)/(1 + T), 7 = a dt/dx. Defining 
M = a/w dx, M is the number of points per wavelength. Expanding f for small o 
we findfas a function of M. Given an error level E we can find the number of points 
per wavelength required to make the error less than a given tolerance. The smaller 
the value of M, the more accurate the algorithm, according to this theory. For 
example, for boundary condition II of Section 2 (i.e., one-sided Euler) 

and so 

f(Z, K) = Z - 1 - T(K - 1) 

Z - 1 - T(K - 1) 7-l 
‘=Z- 1 -T(K1- 1)’ 

__- 
KI = 1 + T  P 

N 
?‘?(I - T”) 

A42 * 

In Table I we present the six sets of boundary conditions considered in Section 2. 
Since Skijllermo used an incorrect value for K1 , our results differ from hers. In the 

TABLE I 

SkGllermo Predictions for Accuracy 

f(Z> K) Number of points per wavelength for 7 of 
EZ------- - 

Scheme f(z, 4 0.25 0.50 0.75 1.0 

I x2(1 f  7)2/W 40 48 55 63 
II n2(1 - 72)/W 31 28 21 0 

III” 4, + 1)/M 393 412 550 629 
Iv x2(1 + 7)2/M’ 40 48 55 63 
V Try1 - T)Z/M” 31 28 21 0 

VI s2(T2 + 7 + 2x7 + l)/MYT + 2) 36 41 1, b 

a presence of an eigenvalue at z = 1, K = (T - l)/(~ + I). 
Q not stable. 
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second column we present E for that scheme. In the following columns we present 
the M necessary to make the error less than 1% for T = 0.25, T = 0.50, 7 = 0.75, 
and T = 1.0. The general conclusion of this theory is that the best methods are II 
(one-sided Euler) and V (linear extrapolation for (BF) at the intermediate step). 
Method III (linear extrapolation for (R) at the intermediate step or equivalently 
u - 0) is the worst of all the methods. This might be caused by the eigenvalue, xt - 
as predicted by Gustaffson. The computational results of Section 7 confirm that 
group III is the worst method, but the other conclusions are not verified by the 
computations. 

6. PARABOLIC STABILITY 

For sufficiently viscous problems the parabolic portion of the equation will dominate 
and one can consider the equation 

Ut = buzz, O<x<l, b>O, 

4% 0) = f(x), (6.1) 

NO, t) = go@), 41, t) = g1w 

Boundary conditions are now given at both ends; however, the two-step scheme 
uses a five-point lattice at the previous time level and hence extra boundary informa- 
tion is required to determine the solution at the net points adjacent to the boundaries. 
It is difficult to generalize the Richtmyer method to this case since the intermediate 
level is at half-points. Hence, we consider only the MacCormack method. 

u!l) 3 = uin + [b dt/(Ax)‘](u;++l - 2ujn + u;-I), 

$+I = +(uin + uj(“) + [b &/~(L~x)~](u~~ - 21.4:) + t&). 

Let u = b dt/(d~)~; then the initial-value problem is stable if 0 < u < 4 . The 
modal analysis equation associated with Eq. (4.2) is given by 

ZK2 = K2 + UK(K - 1)2 + (U2/2)(K - 1)4. (6.3) 

As before we consider only the left boundary, x = 0; the situation at the right 
boundary, x = 1, follows by symmetry. Linear extrapolation no longer leads to a 
first-order approximation at the boundary. Linear extrapolation is equivalent to 
assuming that u,, = 0. However, by Eq. (4.1) this implies ut = 0, i.e., a zeroth-order 
approximation. We therefore consider the boundary conditions 

(1) u”, = 34)” - 3Uln + UZn, 

(2) up = &a + 4, 

(3) up’ = 3up - 324;’ + up, 
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THEOREM 6.1. All the aboae boundary conditions are stable when used in con- 
junction with scheme (4.2). 

The proof follows the same pattern as before and will not be given. 

Remark 1. Algorithm (2) states that one should use the given data also at the 
intermediate step. As seen in the Section 7 this is also useful for the hyperbolic case 
whenever appropriate. 

Remark 2. The above results apply only for truly parabolic systems. The hydro- 
dynamic equations at high Reynolds numbers should be considered as a singular 
perturbation of a hyperbolic system (see [4, 1 I]). 

7. COMPUTATIONAL RESULTS 

The theoretical conclusions of the sections on hyperbolic equations were tested 
on several problems. The first two cases concern the system 

lit = -u, - 20, ) 

L’t = -2u, - 2’,, O<X< 1, t>o. 
(7.1) 

This system has a solution 

u = .Nl> + dt% 

z’ = ml> - d52), (7.2) 
i$ = x - 3t, (2 = x f t. 

This is solved using the MacCormack (FB) method, Eq. (3.2). Boundary conditions 
are imposed on u at both the left and right boundaries. The initial and boundary 
conditions used are given by (7.2). The first case considered is withf, g given by 

f(x) = e’ix sin 27rx, g(x) = e-2nz cos 2rx. (7.3) 

In this case the solution decays and at t = 10 the L, norm is about 1% of the original 
energy. The second case is with 

f(x) = sin 2rx, g(x) = cos 2%-x. (7.4) 

In this case the solution is periodic but this fact is never used. For both cases it is 
necessary to calculate u at both the left and right boundaries. In Table II we present 
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TABLE II 

Errors in the Lz Norm for (7.1) withf Given by (7.3) 

CFL = 0.9 CFL = 0.9 CFL = 0.9 CFL = 0.25 CFL = 0.25 CFL = 0.25 
Scheme Time = 1.0 Time = 5.0 Time = 10.0 Time = 1.0 Time = 5.0 Time = 10.0 

L=Z;R=Z .0184 .0135 
L=Z;R=V .OlOl .0088 
L = Z; R = Q .0070 .0062 
L-I;R=Z .0179 .0133 
L ;zz 1;R = V .0087 .0083 
z, mz I;R = Q .0045 .0043 
L -= Q; R = Z .0178 .0124 

L = Q; R = V .0087 .0079 
L = Q; R = Q .0046 .0041 

L = II; R = V .0094 .0087 

L = III; R = V .0423 .I734 

L == IV; R = V .0088 .0074 

L = I; R = IV .0014 .0012 
L L= IV; R = IV .0016 .OOlO 

L -= VI; R = V U U 
L = ZT; R = ZT .0054 .0040 

.0090 

.0077 

.0055 

.0132 

.0089 
.0043 
.0109 

.0078 

.0039 

.0095 

.3430 

.0014 
.0009 

U 
.0036 

.0310 .0201 .0156 

.0125 .0119 .0113 

.0092 .0081 .0076 

.0306 .0264 .0274 

.OllO .0129 .0183 

.0072 .0076 .0096 
.0305 .0253 .0238 

.OllO .0122 .0159 

.0072 .0073 .0085 

.0114 .0115 .0132 

.0493 .1983 .3910 

.0114 .OllO .0123 

.0065 .0071 .0080 

.0067 0056 .0047 

.OllO .0130 .0180 

.0263 .0169 .0129 

a Analytic boundary conditions are imposed after both steps. U denotes an instability. CFL = 

a(dr;ds). 

TABLE III 

Errors in the L, Norm for (7.1) with f Given by (7.3) 

CFL = 0.9 CFL = 0.9 CFL = 0.9 CFL = 0.25 CFL = 0.25 CFL = 0.25 

Time = 1.0 Time = 5.0 Time = 10.0 Time = 1.0 Time = 5.0 Time = 10.0 

L Z;R=Z .0714 
LrzZ;RxV .0538 
L = Z; R = Q .0325 
L=I;R=Z .0707 
L=I;R=V .0526 
L=I;R=Q .0308 
L==Q;R==Z U 
L-Q;R=V U 

L=Q;R-Q U 
L = II; R = V .0530 
L = III; R = V .I021 

L = IV; R = V .0530 
L = I; R = IV .0015 
L = IV; R = IV .0024 

L=VI;R=V U 
L=ZT;R-ZT.0083 

.0381 

.0638 
.0285 
.0494 

.lOlO 

.0384 
U 

U 
U 

.0779 

.2801 

.0259 .0500 .0304 .0225 

.0885 .0206 .0208 .0214 

.0252 ,012s .0116 .0106 

.0465 .0496 .0415 .0427 

.2512 .0194 .0269 .0473 

.0603 .0107 .0125 .0174 
U u U U 
U U IJ U 
U U U U 

.1398 .0196 .0217 .0280 

.5424 .0778 .2330 .4153 

.0997 .0196 .0210 .0260 
xl020 SW67 .0086 .0106 
.0017 .0070 .0062 .0050 

U .0496 .0421 .0439 
.0054 .0498 .0307 .0176 

u Analytic boundary conditions used only once per cycle. U denotes an instability. CFL = a(df/dx). 
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TABLE IV 

Errors in the L, Norm for (7.1) with f Given by (7.4)” 

CFL = 0.9 CFL = 0.9 CFL = 0.9 CFL = 0.25 CFL = 0.25 CFL = 0.25 
Scheme Time = 1.0 Time = 5.0 Time = 10.0 Time = 1.0 Time = 5.0 Time = 10.0 

L=Z;R=Z .1099 .1448 .1438 .1474 .1679 .I550 

L = Z; R = V .1122 .2554 .2632 .1487 .3780 .3249 
L = Z; R = Q .1107 .2497 .2635 .1459 .3591 .3249 
L=I;R=Z .0607 .1156 .1049 .0882 .1418 .1383 

L=I;R=V .0295 .0355 .0372 .0348 .0998 .0764 
L=I;R=Q .0287 .0480 .0465 .0335 .0939 .0721 
L=Q;R=Z .0611 .I111 .0929 .0852 .1281 .1301 
L = Q; R = V .0359 .0575 .0402 .0371 .0946 .0509 
L = Q; R = Q .0358 .0701 .0516 .0366 .0947 .0544 
L = II; R = V .0802 .2264 .1471 .0543 .1388 .0648 
L = III; R = V .1802 .6109 1.110 .2240 .7425 1.268 
L = IV; R = V .0389 .0810 .0561 .0473 .1160 .0547 
L = I; R = IV .0297 .0595 .0530 .0332 .0912 .0667 
L = IV; R = IV .0361 .0559 .0413 .0443 .0866 .0476 
L=VI;R=V U U U .0347 .1007 .0800 
L = ZT; R = ZT .1738 .3354 .2118 .1679 .2139 .1765 

“Analytic boundary conditions are imposed after each step. U denotes an instability. CFL = 
a(dt/&). 

TABLE V 

Errors in the Lz Norm for (7.1) with f Given by (7.4) 

CFL = 0.9 CFL = 0.9 CFL = 0.9 CFL = 0.25 CFL = 0.25 CFL = 0.25 
Scheme Time = 1.0 Time = 5.0 Time = 10.0 Time = 1.0 Time = 5.0 Time = 10. 

L=Z;R-Z .2375 .2611 .2596 
L = Z; R = V .2082 .6616 .9115 
L = Z; R = Q .1946 .5502 .7747 

L=I;R=Z .2015 .3966 .3010 
L=I;R=V .0688 .3344 .5924 
L=I;R=Q .0400 .1672 .2478 

L=Q;R=Z U U U 
L=Q;R=V U U U 
L=Q;R=Q U U U 

L = II; R = V .llOl .4563 .4528 
L = III; R = V .3139 1.132 1.976 

L = IV; R = V .0914 .3425 .2504 

L = I; R = IV .0257 .0500 .0667 
L = IV; R = IV .0533 .1208 .0806 
L=VI;R=V U U U 
L = ZT; R = ZT .3182 .3732 .3512 

.1851 

.1756 

.1702 

.1337 

.0401 

.0334 

u 
U 
U 

.0582 
.2636 
.0549 

.0331 
.0468 

.2103 .2244 .2266 

.1845 

.4744 

.4354 

.2404 

.1388 

.1105 

U 
U 
U 

.1717 

.8901 

.1907 

.4515 
.4327 
.2012 

.1310 

.0958 

U 
U 
U 

.0834 

1.504 
.0721 
.0768 
.0498 

a Analytic boundary conditions used only once per cycle. U denotes an instability. CFL = a(dt/dx). 
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the L, norm of the difference between the numerical and analytic solutions for (7.3). 
This number is normalized by the initial energy of the solution. 

In the first columns of Tables II through V the various boundary treatments are 
given. L and R denote the left and right boundaries, respectively. The numbers 
represent the groups of methods discussed in Section 3. Thus, L = 11; R = V states 
that the left boundary was treated with a group II method while the right boundary 
was calculated with a group V method. In addition to these groups the additional 
cases of zeroth and quadratic extrapolation are denoted by Z and Q, respectively. 
Zeroth extrapolation in space and time, z$+’ = oln, is denoted by ZT. Using the 
(FB) method (3.2) all boundary conditions at the left end were imposed after the 
second step. Boundary conditions at the right were imposed after the first step. 
For Tables II and IV, the analytically given boundary conditions were imposed after 
both steps. For the Richtmyer scheme it is difficult to impose the boundary data 
after each step and so only Tables III and V are relevant. In all these tables the errors 
are given for time steps a dt/dx = CFL = 0.90 and 0.25. 

From Table II we see that at the intermediate level the higher-order extrapolations 
gave improved accuracy. Increasing the order of extrapolation at the end of both 
steps no longer is of any benefit. Zeroth-order extrapolation in space and time is 
advantageous for time steps near the stability limit. As predicted by Gustaffson, 
the use of group III methods is not advisable. This is because of the generalized 
eigenvalue that appears. The best results were obtained using group IV methods, 
which is no longer in agreement with the theory of Skollermo. As shown by the 
scalar analysis of Section 3, boundary treatment VI is unstable for large time 
steps. 

In Table III we consider the same case but with u specified only when it is not 
determined by the scheme and hence only once per boundary per cycle. For several 
boundary conditions the accuracy is decreased by an order of magnitude by this 
change. As predicted in Section 4, quadratic extrapolation at the end yielded unstable 
results. Use of the group VI boundary treatment was also unstable for sufficiently 
large time steps. In this case zeroth-order extrapolation was as good as the higher- 
order extrapolations except for short times. As before, the usefulness of zeroth- 
extrapolation increases for longer times. Table IV is similar to Table II but with the 
solution given by (7.4), while Table V considers the same solution specifying u at 
only one of the two steps. The general conclusions are similar to those of the previous 
case. The general error level is higher in the second case since the energy is no longer 
decaying. 

As an additional case we consider the one-dimensional inviscid fluid dynamic 
equations for a converging-diverging nozzle. The two-dimensional effects are ac- 
counted for, since A(x) appears in the equations. The solution approaches a steady 
state and so the nature of the problem is different from that of the previously con- 
sidered cases. At the inlet the total pressure and total temperature are prescribed. 
At the outlet the flow is supersonic and so no conditions are given. With the parameters 
chosen no shocks appear. In Table VI we present the results for several boundary 
treatment at the inlet using the MacCormack (FB) scheme. As expected, changing 
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TABLE VI 

Inviscid Equations for Converging-Diverging Nozzle” 

Cycles to reach Error for Error for 
Left boundary steady state M (throat) M (inlet) 

Zero extrap. 426 .00561 .00248 
Linear extrap. (I) 420 .00296 .00125 
Quadratic extrap. 419 .00307 .00142 
Euler (11~) Unstable 
Zero-Space-Time 427 .00553 .00247 
IIIb DID NOT CONVERGE IN 2000 CYCLES 

IVb 431 .00021 .00005 
VI 420 .00284 .00114 

a Steady state is considered to be reached when I pt/p I < 10-j. Right boundary was not varied. 
Error at steady state for Mach number is given. 

the boundary treatment at the supersonic outlet did not have any large effect. The 
second column of Table VI gives the number of cycles required for max, / pt/p 1 < 1O-5 
In the next columns we present the error in the calculated Mach number at both 
the inlet and the throat. 

The problem was also solved using the (BF) variant of the MacCormack method. 
This latter method was more accurate than the first variant. The difference between 
the two finite-difference methods was as important as the difference between the 
various boundary treatments. Differences between the two variants were analyzed 
by Lerat and Peyret [7] for shocked flows. Specifying the given variables at both 
steps again improved the accuracy. As before, the use of group IV methods led to the 
most accurate results while the group III method did not achieve steady state within 
2000 cycles. The use of a one-sided Euler method (IIb or 11~) led to instabilities. 

8. CONCLUSIONS 

The theory of Kreiss is used to test the stability of various boundary treatments 
for both the Richtmyer and MacCormack methods. Analysis for a scalar equation 
shows that boundaries can cause instabilities even for the Lax-Wendroff type of 
schemes. Because of the complexity of the theory the results of the scalar equation 
are frequently applied to a system. Both analytic and computational results confirm 
that instabilities can occur in systems that do not occur for the scalar equations. 
This happens even for reasonable techniques, as extrapolation. Thus, whenever 
feasible, extrapolations should be performed on variables which approximate the 
outgoing characteristic variables. In this case the scalar theory is valid. 
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Comparisons of the accuracies of the different methods were made. The theory 
of Skollermo [ll] was found useful only for eliminating the least accurate of the 
methods. Imposing the analytic boundary conditions after each step of the method 
dramatically improved the accuracy of the method. As this is feasible only for the 
MacCormack methods, it is a disadvantage of the Richtmyer method. We note that 
imposing these conditions twice lowers the order of accuracy at the point adjoining 
the boundary from second-order to first-order accurate. 

Zeroth-order extrapolation is seen to be a competitive method, especially for 
long-term integrations. Similar conclusions were reached by Chu and Sereny [l]. 
This of course is valid only for reasonable error tolerances. For sufficiently accurate 
answers the use of zeroth-order extrapolation is not recommended. 

Section 3 discusses six groups of methods for treating the boundary. The general 
conclusion is that the group IV methods work best. In this group the one-sided 
difference operator in the MacCormack method is reversed at the edge. As this 
method is not applicable to the Richtmyer method, it again demonstrates the superi- 
ority of the MacCormack schemes for boundary problems. For the Richtmyer 
methods the most reasonable boundary treatment is extrapolation at the ends of 
both steps. Extrapolation, for the Richtmyer method, at the intermediate level is 
strongly discouraged. 

These results can also be applied to the Navier-Stokes equations with a rigid 
wall condition. At the wall the velocities and temperature are given. One can then 
use the above techniques for the density equation, which does not contain any 
second-derivative terms. 

The analysis and computations demonstrate that the boundary treatment must be 
investigated separately for each system of equations. For example, there are differences 
between the results of Sundstrijm [13], who analyzed a fluid dynamic system, and the 
results presented in this study for a wave equation with nonequal sound speeds in the 
positive and negative directions. This may have important implications for non- 
isotropic flow such as occurs in plasticity or in plasma physics. 
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